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The utilization of a numerical absorbing boundary condition, which limits the domain of 
computation, is an important consideration in finite difference simulations of the wave 
equation on infinite regions. One technique for generating these conditions is based on the 
theory of approximate one-way wave equations. In this paper, we investigate the effectiveness 
of second- and third-order boundary conditions based on one-way wave equations derived 
from various classes of approximants. By considering two model problems, our numerical 
experiments indicate that one-way wave equations derived from Pade approximation perform 
best as numerical absorbing boundary conditions for a class of problems of interest in the 
simulation of electromagnetic wave propagation. 0 1988 Academic Press, Inc. 

1. IN~~DUCTION 

In this paper, we are concerned with the numerical implementation of one-way 
wave equations for use as absorbing boundary conditions in finite difference 
simulations of the wave equation. The one-way wave equations considered here are 
obtained from approximations of pseudodifferential operators, which result when 
the wave equation is factored in two-dimensional rectangular coordinates. Recent 
advances in the theory of one-way wave equations, reported by Trefethen and 
Halpern in [ 1,2], have served as the motivation for this study. Also, the work of 
Higdon, reported in [3], has provided insights into the development of difference 
schemes for absorbing boundary conditions and the characterization of boundary 
conditions for waves which obliquely strike the boundaries. 

In this paper, we present stable difference schemes for boundary conditions based 
on the second- and third-order one-way wave equations derived in Ret [2]. The 
difference schemes are presented in a general manner, which easily incorporates the 
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approximations reported in [2]. In particular, the scheme which implements third- 
order absorbing boundary conditions is new. The performance of the difference 
schemes proposed here is compared to other methods, that numerically implement 
one-way wave equations, reported in [3]. 

We investigate the effectiveness of the boundary conditions by employing them in 
finite difference simulations of two problems modeling electromagnetic wave 
propagation. The first problem involves the propagation of a pulse from a point 
source in a two-dimensional domain. The second problem describes the scattering 
of a time-harmonic plane wave from a structure of computational interest. We find 
that the third-order Pad& boundary condition outperforms all other conditions, 
regardless of their order, for the pulse propagation problem. In contrast, the 
second-order Pade condition works best for the time-harmonic scattering problem. 
When the third-order PadC condition is used, a noticeably degraded solution is 
obtained. This degradation seems to be caused by the proximity of the scattering 
body to the artificial boundary. 

The contents of this paper proceed as follows. Section 2 contains a summary of 
the wave propagation algorithm which is used to test the absorbing boundary 
conditions. Section 3 summarizes the application of approximation theory in the 
derivation of second and third-order boundary conditions. Section 4 contains the 
derivation of stable difference approximations, which give explicit expressions for 
the boundary points for both second- and third-order conditions. Section 5 includes 
the results of several numerical experiments which evaluated the effectiveness of the 
conditions for the two model problems. Finally, Section 6 contains a summary and 
a discussion of our experimental results. 

2. THE FD-TD ALGORITHM 

The absorbing boundary conditions considered in this study are coupled to an 
algorithm which is particularly well suited to the study of electromagnetic wave 
interaction problems. The algorithm is a finite-difference time-domain (FD-TD) 
solution of Maxwell’s equations [4-73. For the purposes of this study, a simplified 
version of the this algorithm,. which models two-dimensional electromagnetic wave 
propagation in a homogeneous free-space in the case of transverse magnetic (TM) 
polarization, is used. Details of the algorithm are summarized here so that the 
numerical implementation of the absorbing boundary conditions is easily stated 
and understood. 

The basis of the FD-TD algorithm is Maxwell’s curl equations, 

(2.la) 

(2.lb) 
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where E and H are expressed in a Cartesian coordinate system. Because we are con- 
cerned with the implementation of absorbing boundary conditions on the boundary 
of a homogeneous region which surrounds a scattering body, we use free-space 
values for p and E. For problems in which the fields are independent of the z coor- 
dinate and in the case having the H field contained completely in a plane transverse 
to the z axis (TM polarization), we have 

JW, Y, t) = Ez(x, Y, t) 0 

H(x, Y, t) = H,(x, Y, t) 2 + H,(x, Y, 1) 9 

and the curl equations reduce to 

3HX 1 c3E -= B-2 
at P aY 

a4 = l aJ% 
at pax 

(2.2a) 

(2.2b) 

(2.2c) 

The FD-TD algorithm achieves an approximate solution of Maxwell’s curl 
equations by discretizing the system in (2.2) into a finite difference grid comprised 
of rectangular unit cells of dimensions (dx, dy) and then explicitly integrating the 
system forward in time at discrete time steps of length At. We maintain the 
following notation for the discretized functions on the space-time finite difference 
grid, 

F( i Ax, j Ay, n At) = F”( i, j), 

where the function is evaluated at grid position, (i, j), at the nth time step. 
An efficient and accurate numerical procedure is obtained by subdividing the 

computational domain into unit cells of the type shown in Fig. 1. The E and H field 
components are spatially interleaved at half-space increments and are evaluated at 

FIG. 1. FD-TD unit cell, TM polarization, two-dimensional domain. 

581/77/N 
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alternate half-time steps. This arrangement permits the use of centered difference 
approximations for each partial derivative in the system in (2.2) resulting in com- 
pact, explicit finite difference expressions for each field component in the FD-TD 
grid, which are second-order accurate in both space and time increments. For this 
study, the system in (2.2) is discretized using uniform space increments in the x and 
y coordinates with the result that Ax = dy = A. In addition, the relation, 

A=2cAt (2.3) 

is chosen where c is the speed of light in free-space. The condition in (2.3) was used 
for algebraic convenience and to ensure that the FD-TD algorithm satisfies the 
Courant stability limit [S]. The result of these specifications is the following system 
of finite difference equations which is the discrete approximation for the system in 
(2.2 1, 

Hz+ W(j, j+ $) = fp- 9 i,j+1)+a[E:(i,j)-E:(i,j+ l)] (2.4a) 

HSf+“2(i+t,j)=H[:-1’2(i+~,j)+CI[E:(i+1,j)-E:(i,j)] (2.4b) 

E~+‘(i,j)=E;(i,j)+fi[H;+“2(i+f,j)-H;+”2(i-f,j) 

+H:+“2(i,j-t)-H~+112(i, j+f)], (2.4~) 

where field components are: 

. E 
1 

FIG. 2. Two-dimensional FD-TD computational domain and boundary, TM polarization. 
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where 

At 
a=-, 

PA 

The computational domain used in this study was constructed as shown in Fig. 2. 
The E and H field points on the interior of 52 are determined using the finite dif- 
ference system in (2.4). The electric field points on the boundary of the domain, X?, 
are determined by a one-way wave equation, which is designed to prevent reflec- 
tions. This approach was originally proposed by Engquist and Majda for the scalar 
wave equation [9] and extended by Mur for Maxwell’s equations [lo]. The one- 
way wave equations considered in this study are each used as an absorbing boun- 
dary condition for the boundary of the domain, XG?. Each boundary condition is 
implemented numerically as part of an algorithm which accurately models electro- 
magnetic wave propagation. 

3. GENERALIZED ONE-WAY WAVE EQUATIONS 

The absorbing boundary conditions evaluated in this study are based on general 
second- and third-order one-way wave equations. The equations are generalized in 
the sense that their derivation follows from the application of general rational 
function approximations to ,/n on the interval [ - 1, 11. In [ 11, Trefethen and 
Halpern reduced the design of one-way wave equations to such approximations and 
present seven families of approximants to achieve equations with improved wide- 
angle performance. In [ 11, the dispersion relations for approximate one-way wave 
equations were derived from which the equation, itself, follows directly. In this sec- 
tion, we shall derive equivalent one-way equations using operator factoring 
arguments. 

We begin by considering the two-dimensional wave equation in Cartesian 
coordinates, 

(3.1) 

where Df , D:, and Df denote second partial derivatives with respect to x, y, and t, 
respectively. Next, we factor the wave operator, L, 

Lu=L+L-u=o, 

where L is defined as, 

L-rD x (3.2a) 
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FIG. 3. Two-dimensional Cartesian computational domain. 

and 

CD 
s=---4: 

D, ’ 
(3.2b) 

The operator, L, +, is similarly defined except for a “+” sign before the radical. 
Engquist and Majda [9] showed that at a planar boundary at x=0 an 

application of L- to the wave function, 17, will exactly absorb plane waves incident 
at any angle which travel in the --x direction. Thus, applying 

L-u=0 (3.3) 

at x = 0 functions as an exact absorbing boundary condition which absorbs wave 
motion from the interior of the spatial domain, 52, shown in Fig. 3. The operator, 
Li, performs the same function for waves traveling in the +x direction that 
impinge upon the other boundary at x = h. The presence of the radical in (3.2a) 
classifies L - as a pseudo-differential operator because it is non-local in both the 
space and time variables. This is an undesirable characteristic because it prohibits 
the direct numerical implementation of (3.3) as an absorbing boundary condition 
for dimensions greater than one. 

Algebraic approximations of the radical in (3.2a) produce absorbing boundary 
conditions that can be implemented numerically with finite difference schemes. The 
resulting boundary conditions are not exact in that a small amount of reflection 
does develop as waves pass through the boundary. Recent results suggest that it is 
possible to design an absorbing boundary condition which minimizes the reflection 
as much as possible over a range of incident angles [2]. The substitution, first 
proposed by Engquist and Majda [9], 

Ji7x1+ (3.4) 
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gives the following absorbing boundary condition which can be implemented at the 
boundary, x = 0, 

(3.5) 

Trefethen and Halpern [ 1,2] proposed a generalization of (3.5). They showed 
that the construction of an absorbing boundary condition reduces to the 
approximation of JG on the interval, [ - 1, 11, by the rational function, 

P,(S) T(S) = -, 
q,,(s) 

13.61 

where p and q are polynomials of degree m and n, respectively. The general rational 
function in (3.6) is of type (m, n). By specifying a general type (2,O) approximant, 

Jc7xp,+p2s2, (3.7) 

the second-order absorbing boundary condition, 

u,, -F u,, - cp, u,, = 0. (3.8) 

is obtained. The choice of the coefficients, p,, and pz, is determined by the method 
of approximation. Expressions similar to (3.8) can be derived and applied at the 
other three boundaries of a two-dimensional finite difference grid. Experience with 
the use of (3.5) shows that it works well when the grid truncation boundaries are 
sufficiently distant so that the scattered waves impact the boundaries at near nor- 
mal incidence. Higher order approximations to the radical in (3.2a) were proposed 
in [2] as a means to derive more accurate absorbing boundary conditions. Using 
the general rational approximant of type (2,2), 

gives the third-order absorbing boundary condition, 

40 u,,, + c242 u, -F u,,, - CP2 u, = 0. 

(3.9) 

(3.10) 

The choice of the coefficients, p and q, in (3.9) produces various families of absorb- 
ing boundary conditions as suggested in [2]. 

In earlier works, the radical in (3.2a) was approximated with Pade techniques 
[Z]. For example, the two-term Taylor approximation in (3.4) is a Padt (2,O) type 
approximant. By choosing, po=qo= 1, pz = -a, q2 = --a, a PadC (2, 2) type 
approximation is realized in (3.9) and the resulting absorbing boundary condition 
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TABLE I 

Coefiicients for 3rd-Order Conditions 

Type of 
approximation PO P2 42 

Angles of exact 
absorption (degrees) 

Pad6 
Lp (a = 45”) 
Chebyshev 

points 
L2 
C-P 
Newman 

points 
L" 

1.OOOOO -0.75000 -0.25ooO 0.00 
0.99973 -0.80864 -0.31657 11.7, 31.9,43.5 
0.99650 -0.91296 -0.47258 15.0, 45.0, 75.0 

0.99250 - 0.92233 -0.51084 18.4, 51.3, 76.6 
0.99030 -0.94314 -0.55556 18.4, 53.1,81.2 
l.OOOOO - l.OOcOo -0.66976 0.0, 60.5, 90.0 

0.95651 -0.94354 -0.70385 26.9, 66.6, 87.0 

Note. q. = 1.C!QOOO for each approximant. 

is the third-order condition of Engquist and Majda [9]. Because the PadC family 
interpolates $? exactly at s = 0, the corresponding absorbing boundary con- 
ditions exactly absorb plane waves normally incident on the boundary. (See Fig. 3.) 

Spreading out the angles at which the boundary exactly absorbs plane waves is 
postulated in [2] as a means to obtain absorbing boundary conditions having 
improved wide-angle performance compared to those of the Pade family. Six other 
techniques of approximation are presented in detail in [2] for approximants of 
types: GAO), (2, Oh (2,2), (4,2), and (4,4). In addition to Pad&, the techniques are: 
Least-squares (or L* which minimizes the L* norm of the error of the 
approximation on [ - 1, 1 I), interpolation at Chebyshev points, interpolation at 
Newman points, Chebyshev (or L” which minimizes the L” norm), Chebyshev- 
Pade (or C-P), and Chebyshev on a subinterval (or L,” which minimizes the L” 
norm on the subinterval, IsI < a). 

In the present study, we have concentrated on the numerical implementation and 
evaluation of type (2,O) and (2,2) absorbing boundary conditions. The coefficients 
and angles of exact absorption for seven families of type (2,O) and (2,2) absorbing 
boundary conditions are presented in Tables I and II. The derivation of these 
approximations can be found in [2]. In Section 5, we have evaluated the perfor- 
mance of the absorbing boundary conditions specified in Tables I and II. 

In the present study, each approximant for the radical in (3.2a) yields a boundary 
condition which is exact for plane waves incident at a discrete set of angles on 
[0,7c/2]. The resulting angles of exact absorption are a by-product of the order and 
type of approximant used. A more general approach, which permits the design of 
boundary conditions for plane waves incident at arbitrary angles, is presented by 
Higdon in [3, 151. In [3], Higdon developed the boundary condition, 

[ ( fi a a u=o, 
j=l 

cosajz-cz )I (3.11) 
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TABLE II 

Coelkients for 2nd-Order Conditions 

Type of 
approximation PO PZ 

Angles of exact 
absorption (degrees) 

Padi: 
L$(a=20") 
Chebyshev 

points 
L* 
C-P 
Newman 

points 
L" 

l.OOOOO -0.5oooo 0.00 
1.00023 -0.51555 1.6, 18.7 
1.03597 -0.76537 22.5, 67.5 

1.03084 -0.73631 22.1, 64.4 
1.06103 -0.84883 25.8, 73.9 
1.OOOOO -1.OOOOO 0.0, 90.0 

1.12500 -1.OOOOO 31.4, 81.6 

where n is the order of the condition and the 01~ are the angles of exact absorption. 
Equation (3.8) can be obtained from (3.11) in the case of n = 2 and a wave equation 
substitution, U,, = (l/c’) U,, - U,, giving 

cosal cosa,+ 1 
PO= cosa,+cosa, 

(3.12) 

and 

pz= -l 
cos Lx1 +cos a*’ 

(3.13) 

The coefficients, p and q, in (3.10) can be generated from (3.1 l), in the case of n = 3, 
using the same substitution for U,,. We omit these results for the sake of brevity. In 
fact, (3.11) serves to unify the design of absorbing boundary conditions, and each 
boundary condition considered here can be generated from it. Likewise, any 
second- or third-order boundary condition generated from (3.11) can be implemen- 
ted using the difference schemes developed in the next section. 

4. DIFFERENCE SCHEMES 

The numerical implementation of a one-way wave equation as an absorbing 
boundary condition is achieved using finite difference approximations. The dif- 
ference scheme used must produce a stable simulation when coupled to the interior 
finite difference wave propagation algorithm. This section contains the presentation 
of difference approximations for the absorbing boundary conditions given in (3.8) 
and (3.10) which have proven to be stable in practice. 
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0 0 
w. i+l) U(l, i+l) 

. U(O> i) \ . U(l, j) u(:,j) 

0 0 
uo, i-1) U(l, i-1) 

FIG. 4. Expansion point for difference schemes 

The partial derivatives in either (3.8) or (3.10) are approximated at points on the 
boundary of the domain. The use of centered difference formulas for derivatives 
which are normal to the boundary requires the knowledge of data at points exterior 
to the computational domain. This problem is avoided by expanding the difference 
formulas at a fictitious point mid-way between the boundary and the first row of 
interior grid points. This point is shown in Fig. 4 for a boundary at x = 0. For the 
boundary point, (0, j), the derivative expressions for an absorbing boundary 
condition are evaluated at (4, j). The function at (1, j) is easily related to function 
values at actual grid points by the simple average, 

(4.1) 

and an explicit formula for iJ”+ ’ (0, j) is obtained. 
For the general second-order absorbing boundary condition in (3.8), the 

following difference approximation is readily obtained using the notions described 
above, 

un+ ‘(0, j) = 1 
-------Al -&A*-&& 
2po+ 1 

(4.2) 

where 

A, = V+l(l, j)- U”-‘(1, j)+ Unpl(O, j) 

A*= vl+‘(l,j)-2U”(1,j)-2u”(o,j) 

+ 17”~‘(l,j)+ U”-‘(0, j) 

A,=P(l,j+l)-2U”(l,j)+U”(l,j-1) 

+ U”(O,j+ l)-2U”(O, j)+ U”(0, j- 1). 

(4.2a) 

(4.2b) 

(4.2~) 

The results above are for uniform space increments, Ax = Ay = A, and the 
condition, A = 2c At. Equation (4.2) was derived by applying centered difference 
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formulas at (t, j) for each derivative in (3.8) and then resolving any function 
evaluation at midpoints with the averaging technique in (4.1). 

The discretization of the third-order boundary condition, (3.10), is more subtle 
and involved than the second-order one. A straightforward application of centered 
differences yields an implicit scheme for computing the boundary data. Wishing to 
avoid the need for matrix inversion, we pursued the development of explicit dif- 
ference scheme, which is derived as follows. We begin by multiplying (3.10) by c dt2 
and then observing that the result can be written as 

Yy, = c3 At2 q2 U,, 

where Y is the auxiliary function, 

Y=:At2 U,,+cp,At’ Uyy-qoAt2 U,,. 

(4.3 1 

Using centered difference formulas in (4.3) we then obtain the explicit expression 

IP”+L(O,j)+-+ !r’(O,j) (4Sa) 

YO(0, j) = Y ‘(0, j) = 0, (4.5b) 

where 

r= U”(l,j+ 1)-2U”(l, j)+ U”(1, j- 1) 

- U”(0, j+ 1)+2U”(O, j)- U”(0, j- 1). (4.6) 

Finally, discretizing (4.4) by centered differences, we find that U”+ ‘(0, j) is given 
by 

un+l(O, j)=4 
2p,+q, 

y*(O j)+%!A -!!!?A -!!?A 1 ’ 4 1 2 2 8 3 ’ (4.7) 

where /i , , A,, /i, are defined as in (4.2). 
It is interesting to observe that the scheme for the third-order condition reduces 

to the scheme for the second-order condition for an appropriate choice of coef- 
ficients. This can be seen by setting q. = 1 and q2 = 0 in (3.9) noting that it reduces 
to (3.7). Then letting q2 =0 in (4.5) gives !P”(O, j) =0 for all n and thus (4.7) 
reduces to (4.2). 

Other difference schemes for second- and third-order absorbing boundary con- 
ditions have been proposed by Higdon in [3]. We summarize Higdon’s scheme for 
the second- and third-order conditions of Engquist and Majda. In [3 1, Higdon 
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proved that the nth-order Engquist and Majda condition 
be written as 

[ 1 -g-g n u=o, 
at the x = 0 boundary can 

(4.8) 

with the wave speed scaled to unity. For n = 2, (3.5) is obtained from (4.8) by using 
the wave equation substitution, U, = U,, - U,. Equation (3.10), in the case of the 
Pade (2,2) coefficients is obtained for n = 3 by the same substitution. Higdon’s 
difference approximation for (4.8) is 

[+-(!.L$l)(EJJ Un+'(O, j)=O, (4.9) 

where Z and K are the shift operators, 

ZmUn(i, j) = U”+“(i, j) 

lymuyi, j) = uyi+ m, j), 

and Z is the identity operator. Thus, for the boundary point, (0, j), Higdon’s scheme 
requires data from the boundary at earlier time steps and from the interior 
involving shifts only in the x direction. 

Explicit expressions for Cl”+ ‘(0, j) are now obtained from his formulas. 
Expanding (4.9) for n = 2, 3 and using the condition, Ax = 2c At, c = 1, alternative 
difference schemes to (4.2) and (4.7) for the Pad6 (2,O) and Pad6 (2,2) conditions 
are obtained. For n = 2, the result is 

un+l(o,j)=g[A, +gl,-&i,], 

where 

A, = 2U”(O, j) - U”-‘(0, j) 

A,= V+‘(l,j)- U”-‘(1, j)+ U”-‘(0, j) 

A,= U”+l(2, j)+2Un(2,j)+ Unp1(2,j) 

-2U“+‘(1,j)-4U”(1,j)-2U”-1(1,j) 

+ 2U”(O, j) + U”-‘(0, j). 

For n = 3, the expression is 

(4.10) 

(4.10a) 

(4.10b) 

(4.1Oc) 

U”+‘(O, j)=f&A, + ~~Z-&&4+&&, (4.11) 
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where 

A,=3U”(O,j)-3un-‘(O,j)+ tl-2(O,j) 

A,= U”+‘(l,j)- U”(1, j)- u”-‘(1, j)+ U-*(1, j) 

+ u”(0, j) + u”- ‘(0, j) - U”-*(O, j) 

A, = U”+ ‘(2, j)- U”-‘(2, j) + U”(2, j) - U-*(2, j) 

-2u”+‘(l,j)+2U”-‘(1, j)-2U”(l, j)+2U”-*(l, j) 

(4.11a) 

(4.11b) 

- I!J”~‘(O, j) + U”(0, j) - U”-*(O, j) (4.11c) 

A4 = U”+ ‘(3, j) + 3U”-‘(3, j) + 3u”(3, j) + U”-*(3, j) 

-3U”+‘(2, j)-9Une1(2, j)-9U”(2, j)-3U”-*(2, j) 

+3U”+‘(l, j)+9U”-‘(1, j)+9U”(1,j)+3Un-*(l,j) 

-3U”(O, j)-3U”-‘(0, j)-U+*(O,j). (4.11d) 

In the next section, the performance of (4.10) and (4.11) is compared to their coun- 
terparts in (4.2) and (4.7) in a model problem involving pulse propagation. 

The difference schemes presented in this section are designed to implement absor- 
bing conditions at points on the boundary other than the corners. The problem of 
resolving the solution at a corner has been addressed by various authors [15-171. 
The corner condition, used in our numerical experiments, is now described. In the 
neighborhood of a corner, we assume the solution travels outward along the direc- 
tion of a mesh diagonal. For a mesh cell at a corner of the domain, we compute the 
solution at an intermediate point which is one space increment, A, away from the 
corner point along the direction of the mesh diagonal. This is done by linear inter- 
polation of the solution at the vertices of the corner cell. With the specification 
given in Eq. (2.3) the solution at this intermediate point requires two time 
increments to propagate along the diagonal to the position of the corner point. 
Thus, the corner point at the nth time step is simply the value of the intermediate 
point in the corner cell at the (n - 2)th time step. This approach is similar to the 
approach given in [ 161, and has yielded a corner handling scheme that has proven 
to be stable in practice. 

5. NUMERICAL EXPERIMENTS 

This section contains the results of our numerical experiments, which were 
designed to evaluate the effectiveness of the absorbing boundary conditions presen- 
ted in Section 3. Two groups of experiments were considered here. The lirst group, 
herein called “pulse studies,” was performed to determine the reflection that a pulse 
produces as it propagates through a test boundary. Two measures were used for 
comparison. In the first, the profile of the normalized field reflected from the test 
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boundary was observed at a time step when the bulk of the test pulse had passed 
through the boundary. In the second, a measure of the total reflected error in the 
test domain was provided by calculating a value proportional to the L2 norm of the 
reflected error at each time step. The second group of experiments, called “scatter- 
ing studies,” was performed to determine the steady state surface currents induced 
on a canonical scattering body which is illuminated by a TM polarized plane wave. 
The finite difference solutions in these cases are compared to a reference solution 
previously obtained by a numerical solution of an integral equation. 

(1) Pulse Studies 

In these studies, we measured the amount of reflection an outward propagating 
pulse produces as it moves through a boundary on which a one-way wave equation 
is applied. Figure 5a shows two domains on which the two dimensional FD-TD 

I 
Y 

(a) 

0 10 20 30 40 
Time Step 

(b) 

Source at 
w325) 

Test Boundary 

FIG. 5. Pulse studies: (a) computational domains; (b) wave source. 
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algorithm was computed for the transverse magnetic (TM) case. An absorbing 
boundary condition was applied on the boundary of the test domain, Q,. Each 
point of 0, was contained in the larger domain, 0, and a line source was located 
at grid position (50,25) in Sz,. The source produced an outward propagating cylin- 
drical wave which was coincident in both domains until the wave first interacts with 
the boundary of Sz,. Any reflection from the boundary of 52, made the solution, at 
points within the test domain, differ from the corresponding points within 52,. The 
solution at points within Q, represented ideal, free-space propagation until the 
wave reflected from its own boundary entered QT. Thus, by calculating the 
difference between the solutions at each point and at each time step, a measure of 
the reflection caused by the boundary of Sz, was obtained. 

We define at the nth time step, 

-0 02 

-0.03 ' --- 

a04 I . , . , ( , . 
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for all (i, j) within the test domain, where ET is the solution within QT and Ef’ is the 
solution at points in 0,. Thus, D(i, j) is the error at each point in the test domain 
caused by boundary reflections. We also define the reflected error measure, 

E = 11 D*(i, j) (5.2) 
i j  

for all (i, j) within 52, which is proportional to the L* norm of the total reflected 
error within the test grid at the nth time step. 

The source used in the experiments was a pulse obtained from [ 111. It is deftned 
by 
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where 

271m 
CO,=-, m=l,2,3, 

5 

(f=n At, 

z = 10-9, 

and At is the time step used in the simulation. In all experiments, At was taken as 

At=2.5x10W1’s 
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and 

A=2cAt, (5.4) 

where c is the speed of light in free-space and A is the spatial increment of the finite 
difference grid. The profile of the pulse defined in (5.3) is shown in Fig. 5b. This 
pulse was selected because it is extremely smooth. As discussed in [ 111, the first five 
derivatives of the pulse vanish at 5 = 0 and 5 = z. Thus, (5.3) is a good 
approximation to a smooth compact pulse. 

The source point in Fig. 5a is 25 cells from the boundary at y = 0. With the 
specification in (5.4), disturbances at the source point required 50 time steps to 
propagate to the boundary at y =O. Similarly, the peak of the pulse struck the 
boundary at the 70th time step. The reflection was observed at the first row of grid 
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points away from the y = 0 boundary along /= 1 (i.e., D(i, 1)) at time step, n = 100. 
This permitted the bulk of the pulse to pass through the boundary and yielded the 
largest observable reflection. The elongated boundary of L?, was taken to be 25 
cells beyond the y = 0 boundary of Qg. At the time step, n = 150, reflections from 
the outer boundary just begin to enter the region of Q, coincident with Q,. 
Therefore, (5.2) is a valid measure of reflection solely from the boundary of G2, 
until this time step. 

The results of these experiments are presented in Figs. 6 to 15. Figures 6 to 12 
illustrate the results for each absorbing boundary condition defined in Tables I and 
II, and are arranged in order of decreasing performance. The scales of the plots are 
adjusted to show the wide range of observed boundary reflections and to compare, 
on the same scale, the performance of second- and third-order conditions for each 
class of approximation. The boundary conditions were implemented using the dif- 
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ference schemes presented in (4.2) and (4.7). Figures 6a to 12a show the normalized 
values of D(i, 1) at time step, n = 100. The plots are normalized to the peak value of 
the incident pulse which strikes the y = 0 boundary at position (50,O). Figures 6b 
to 12b show the reflected error measure defined in (5.2). Figure 13 shows a com- 
parison between the performance of the Pade (2,2) and the L,” (2,2) conditions. 
These are observed to be the two best performing third-order conditions. The 
results presented in Figs. 6 to 12 indicate that the third-order conditions perform 
much better in the measures defined here than their second-order counterparts for 
each family of approximants derived in [Z]. 

The issue of mild instabilities, caused by boundary conditions of third-order (or 
higher) and incident waves containing frequency components at or near the zero 
frequency, has been raised by Higdon in [3]. Figures 14 and 15 compare the 
performance of second- and third-order Pad& conditions obtained using Higdon’s 
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schemes, (4.10) and (4.1 l), and the schemes developed in the present work, (4.2) 
and (4.7). For the Pade (2,O) condition, (4.2) and (4.10) perform approximately the 
same. For the Pad& (2, 2) condition, (4.7) performs much better than (4.11). The 
conclusions presented in Section 6 of [3] are evident in the model problem presen- 
ted here. The scheme, (4.1 l), does produce much larger boundary reflections than 
the scheme for the second-order condition, (4.10). However, the scheme, (4.7), 
remained stable when excited by the same incident wave, (5.3), which has 
significant low frequency content. It is apparent that (4.7) avoids the instabilities 
noted in [3] for third-order conditions at least for this test problem. However, 
Higdon has recently proposed [15] a new discretization for (4.8), replacing (4.9) 
but has not presented numerical results for the case of a third-order boundary con- 
dition. We have implemented his new scheme, in the case of the third-order PadC 
boundary condition, for this test problem and have found that it does avoid the 
previously observed instability while yielding results comparable to ours (Fig. 6). 
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(2) Scattering Studies 

In this group of experiments, the absorbing boundary conditions presented in 
Section 3 were used in the calculation of electromagnetic wave scattering from a 
structure of computational interest. The scattering body was taken as a perfectly 
conducting cylinder of square cross section and it was illuminated by a TM 
polarized plane wave. The incident plane wave impinged on the cylinder at an angle 
of bi as shown in Fig. 16. We considered two cases, & = 0” (broadside incidence on 
side a-b) and 4’ = 45”. 

A quantity of physical interest in this problem is the steady state electric current 
density induced on the surface of the cylinder. The solution to this problem is well 
known. Mei and Van Blade1 present numerical solutions, of an integral formulation 
of this problem in [ 12, 131, for cylinders of various electrical sizes for both TM and 

Grid Position, I 

(a) Reflection at n = 100 

Time Step 

(b) Retlected Error Measure 

- Padi 
* Cheby Sub 

- Padd 
+ Cheby Sub 

FIG. 13. Comparison of two best 3rd-order conditions. 



ABSORBING BOUNDARY CONDITIONS 131 

TE polarizations. Taflove and Umashankar solved this problem in the TM case, 
using the FD-TD algorithm and the Pad& (2,O) boundary condition in [ 141, for a 
cylinder of electrical size, k,A, = 1. Here, A, is the half-width of one side and k, is 
the free space propagation constant. In this study, we reproduced their results for 
the surface current on sides a-b and d-c, in the case of qY = O”, and on sides a-b and 
b-c, in the case of qV = 45”, and used them as reference solutions. 

In our experiments, the cylinder was illuminated by a plane wave at 300 Mhz 
having a free-space wavelength of 1 m. Each side of the cylinder spanned 20 FD-TD 
cells. The space increment, A, was selected so that the half-length of each side, A,, 
gave k,A, = 1. In presenting the results, we plot the magnitude of the surface 
current density normalized to the magnitude of the incident magnetic field (i.e., 
l&I/H’). Details pertaining to the calculation of induced surface currents using the 
FD-TD solution can be found in [14]. 

0.03 I\ I\ -1 

-0.04 4 I , . I , I 
0 20 40 60 80 100 

Grid Position, I 

(a) Reflection at n = 100 

-1111 

00004- 

8 
00003- 

5 

0.0002 - 

0 0001 - 

75 100 125 

Time Step 

(b) Reflected Error Measure 

150 

*  Eqn 411 

- Eqn 42 

* Eq” 411 
- 62” 42 

FIG. 14. Comparison of difference schemes for Pad.5 (2,O) condition. 



132 BLASCHAK AND KRIEGSMANN 

In the first group of experiments, the cylinder was located within a 50 x 50 grid 
with qSi = 0”. Each side of the cylinder was positioned 15 cells from the boundary. 
The results are presented in Fig. 17 for the PadC conditions and in Fig. 18 for the 
L,” conditions. On the front face of the cylinder (broadside), the cell nearest corner 
“a” corresponds to position 0 on the graphs and corner “b” corresponds to position 
20. On the back face (shadow region), the cell nearest corner “d” corresponds to 
position 0 on the graphs while corner “c” corresponds to position 20. In this group 
of experiments, the PadC (2,O) result corresponds to the reference solution. Both 
the Padt and L,” conditions give good results in the broadside region. The third- 
order conditions appear to underestimate the solution in the shadow region with 
L,” (2, 2) performing marginally worse than Padt (2, 2). This result is unexpected 
and will be addressed in Section 6. 

In the second group of experiments, the cylinder was positioned within a 46 x 46 
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contracted grid with q? = 0”. The objective was to determine if a third-order 
condition could be used successfully on a smaller domain in a situation where a 
second-order condition produced a degraded solution. Figures 19 and 20 show 
results for the Pad& and L,” conditions. In these experiments, sides a-b and d-a were 
positioned 13 cells from the boundary. In the broadside region, the (2,O) conditions 
produced solutions which were degraded from the reference. The degradation is 
most noticeable near the corners of the cylinder. The (2,2) conditions produced 
solutions which were similarly degraded and were unsatisfactory in the shadow 
region. Specifically, the surface current density was underestimated along the entire 
backside of the cylinder. The solutions obtained with the (2,O) conditions were also 
unacceptable, but did not degrade as dramatically. 

In the final group of experiments, the cylinder was located within a 50 x 50 grid 
with 4’ = 45”. The objective was to employ the boundary conditions in a situation 
where the reflected waves from the cylinder struck the boundary at angles far from 
normal incidence. In the previous experiments with # = O”, a strong reflection from 
side a-b interacted with the x = 0 boundary at normal incidence. At qY = 45”, strong 
reflections from sides a-b and a-d strike the x = 0 and y =0 boundaries at 45”. 
Figure 21 shows results for the Pade (2,O) and the L,” (2,2) conditions. One of the 
angles of exact absorption for the L,” (2, 2) condition is near 45”. The results show 
that both boundary conditions give excellent results, which include diffractive 
effects at the corners of the cylinder. From this experiment, it is difficult to discern 
any significant difference between the use of either boundary condition. 
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FIG. 16. Perfectly-conducting square cylinder illuminated with TM polarized plane wave. 
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6. DISCU~XON OF RESULTS 

The results of the pulse studies show that third-order absorbing boundary con- 
ditions, implemented with the scheme given in (4.7), produce less reflection than 
their second-order counterparts. The pulse study experiments were designed to 
evaluate their performance in a situation where waves interact with the boundary 
over a wide range of incident angles while the wave source remains distant from the 
boundary. The PadC conditions, which are designed to accurately absorb waves at 
near normal incidence, performed best in this situation. This is because the incident 
field strength is largest at those boundary points where the incident wave is nearly 
normal. At the other boundary points, the field strength is smaller due the cylin- 
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drical spreading of the incident wave. Therefore, the other boundary conditions, 
which sacrifice accuracy at normal incidence for performance at other angles, 
produce larger reflections. Our results indicate that, for problems of this type, 
higher order Pad6 boundary conditions may be helpful in further reducing spurious 
boundary reflections. 

The scattering experiments were much more demanding than the pulse studies on 
the boundary conditions. This is because the waves interact several times with the 
boundaries before a time-harmonic state is reached. Thus, boundary reflections tend 
to compound numerical errors. These errors do not appear on the illuminated por- 
tion of the cylinder, where the current is primarily induced by the incident plane 
wave. However, the current in the shadow region is produced by the diffraction of 
the incident wave by the cylinder corners. It is much smaller in amplitude. The 
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solution in the shadow region is more sensitive to the effects of spurious boundary 
reflections which act as additional, inward propagating wave sources and induce 
non-physical currents on the cylinder. 

Our results show, for the case &=O’, that the third-order boundary conditions 
produce more reflections than second-order conditions. This was clearly evident 
from the errors in the shadow region solution. However, in the case of qSi = 45”, the 
incident wave illuminates a larger portion of the cylinder, which produces larger 
currents in the shadow region. Thus, it was more diffkult to detect the effects of 
boundary reflections in the shadow region for the either the Pade or the L,” 
conditions. 

In the experiments with &‘= O”, the boundaries were positioned less than $ 
wavelength from the scatterer, which was consistent with the simulations reported 
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in [14]. The boundary conditions were applied in the near field regime where the 
scattered field is strongly characterized by the outward propagating cylindrical 
waves generated by corner diffraction. The boundary conditions tested were 
designed to absorb outward propagating plane waves. When these were required to 
operate on cylindrical waves, the boundary operators introduced errors which were 
larger for the third-order conditions. We believe that these are caused by truncation 
errors. For third-order conditions, the truncation error generated by taking a third- 
order spatial derivative is 0(d2/r9’*). Whereas, in a typical second-order condition, 
the error, for taking a second-order spatial derivative, is O(d*/r’/*). Thus, when 
these conditions are applied near a corner of the target, where r = 0 for the diffrac- 
ted wave, the third-order condition generates larger errors. In contrast, this 
phenomenon was not experienced in the pulse studies because the waves experien- 
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ted significant cylindrical decay and spreading in reaching the boundary. It is well 
known that computational boundaries must be sufficiently distant from sources of 
scattered waves so that the boundary conditions operate on outward propagating 
plane waves. What is novel about our scattering experiments is the strong 
suggestion that second-order boundary conditions are preferable to third-order 
conditions on a small computational domain. 
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